2. Klausur LK 12 Nachschrift

In einem kartesischen Koordinatensystem seien die Punkte A(7;5;3), B(11;9;5), C(8;11;7), $D(d_x;d_y;d_z)$ und S(9,5;1;15) die Eckpunkte einer Pyramide mit rechteckiger Grundfläche ABCD.

- 1. Ermitteln Sie die Koordinaten des Punktes D und stellen Sie die Pyramide grafisch dar!
- 2. Der Punkt M ist der Mittelpunkt des Rechtecks ABCD. Weisen Sie nach, dass die Strecke MS die Höhe der Pyramide ist und berechnen Sie das Volumen der Pyramide!
- 3. Geben Sie eine Parametergleichung und eine Koordinatengleichung der Ebene ϵ an, die die Punkte B, C und S enthält.
- 4. Gegeben sind die Geraden g_t mit dem Richtungsvektor $\begin{pmatrix} 1 \\ t \\ 6 \end{pmatrix}$ durch M.

Berechnen Sie für die Gerade g_4 die Koordinaten des Durchstoßpunktes durch die Ebene ϵ .

Weisen Sie nach, dass es keine Gerade gt gibt, die durch C verläuft!

Für welches t ist g_t parallel zu ϵ ?